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We propose a protocol for generating high-quality, partially
coherent (quasi-)Bessel beam arrays with controllable beam
order and spatial distributions. Our protocol involves, apart
from beam intensity shaping, coherence engineering of
recently introduced optical coherence lattices. Our theoreti-
cal results are validated with the experimental realization
of partially coherent Bessel beam arrays. The novel beam
arrays are anticipated to be useful for multi-particle
trapping and micromanipulation, optical metrology and
microscopy, as well as for 3D imaging. © 2018 Optical
Society of America
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Diffraction is a ubiquitous phenomenon in physical optics, af-
fecting any optical wave packet of a finite spatial extent. It was
shown by Durnin [1], however, that Bessel beams, containing a
central lobe surrounded by a series of concentric rings, display
remarkable resilience to diffraction over long propagation dis-
tances. In addition, Bessel beams exhibit a self-healing property
when scattered from fine scale obstacles [2]. These features
make Bessel beams especially attractive for particle trapping,
atomic guiding, optical micromanipulation, microscopy, and
cell imaging, to mention but a few applications [3–6]. Realistic
Bessel beams cannot of course carry infinite power, and hence
they have to be apertured; we are concerned with such (quasi-)
Bessel beams hereafter.

Further, periodic beam arrays have crucial applications to
cold atom trapping, optical grating design, microfluidic sorting,
photonic crystals engineering, and optical communications
[7–12]. There has been reported a multitude of methods to
generate coherent and partially coherent beam arrays to date
[9,13–19]. In this context, (quasi-)Bessel beam arrays (BBAs),

can find widespread applications to real-time volumetric
imaging, transverse blood flow velocimetry [10], microparticle
guiding [11], and spatiotemporal soliton stabilization [12],
for example. There have been a considerable number of meth-
ods reported for BBA generation so far [15–19]. However, the
existing approaches suffer from considerable shortcomings such
as low beam quality [15–18], poor beam order control [15,19],
and reliance on rather uncommon optical materials [19].

As is well known, an annular aperture can be used to
generate a Bessel beam [20]. It has been recently shown theo-
retically [21] and demonstrated experimentally [22] that optical
coherence lattices (OCLs) can be used to generate beam arrays.
In this Letter, we combine the functionality of the annular
aperture and the OCLs to generate partially coherent BBAs
of highly controllable beam orders and spatial distributions
via spatial coherence periodicity engineering.

As a starting point, we recall that second-order statistical
properties of scalar optical fields can be characterized by the
cross-spectral density in the space-frequency domain. In par-
ticular, the genuine cross-spectral density of a Schell-model-
type partially coherent beam can be represented as [23]

W �0��ρ1, ρ2� � τ��ρ1�τ�ρ2�μ�ρ2 − ρ1�
� τ��ρ1�τ�ρ2�p̃�ρ2 − ρ1�, (1)

where ρi�i � 1, 2� is a position vector in the source plane, τ�ρ�
an arbitrary complex function, and p̃ a Fourier transform
of a non-negative function p. If a Schell-model source is
generated by spatially modulating—for instance, via a finite
aperture of an imaging system—a statistically homogeneous
source with the spectral degree of coherence μ, τ�ρ� can re-
present an aperture function of the imaging system. We will
assume it to be the case hereafter.

Further, we assume, following [21], that the p function is
given by

p�v� � 1

M

XM
n�1

δ�v − V0n�, (2)
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where V0n � �V0xn,V0yn� is an off-axis displacement, and δ is a
Dirac delta function. Using Eq. (2), we can rewrite the source
degree of coherence as

μ�ρ2 − ρ1� �
1

M

XM
n�1

exp�−i�ρ2 − ρ1� · V0n�: (3)

Eq. (3) specifies the degree of coherence of an OCL; this class of
partially coherent beams was theoretically introduced in
Ref. [21], and OCLs were experimentally realized in Ref. [22].

Next, the radiant intensity of any paraxial, partially coherent
field can be shown to be related to the cross-spectral density at
the source as [24]

I�s� ∝ W̃ �0��−ks⊥, ks⊥�, (4)

where the tilde represents a Fourier transform; s⊥ is a 2D
projection onto the source plane of the unit vector s pointing
from the origin to a far-field observation point, and k � 2π∕λ
with λ being the wavelength of light.

It follows at once from Eqs. (1) and (4) that the radiant
intensity can be expressed as [25]

I�s� ∝ jτ̃�−ks⊥�j2 ⊗ p�−ks⊥�, (5)

where “⊗” denotes a convolution. In this expression, p plays
the role of a sampling function for the complex valued aperture
profile function τ̃. In case of sampling with an ideal OCL, given
by Eq. (2), Eq. (5), takes the form

I�s� ∝
XM
n�1

��τ̃�k�s⊥ � V0n��
��2: (6)

To generate an ideal BBA, we choose τ as

τ�ρ, θ� � δ�ρ − R� exp�ilθ�, (7)

where �ρ, θ� are polar coordinates. Eq. (7) describes a combined
action of an infinitely thin annular aperture of radius R and a
spiral phase plate imposing a topological charge l on a trans-
mitted beam.

On substituting Eq. (7) into Eq. (6), we obtain the radiant
intensity of an ideal BBA in the form

I�s� ∝
XM
n�1

J2l �kRjs⊥ � V0nj�: (8)

Eq. (8) clearly represents an array of uncorrelated ideal Bessel
beams, each component having the same topological charge l .

To touch base with the laboratory realization of the pro-
posed partially coherent BBAs, we consider an OCL with a
finite node width ws, modeled by a Gaussian array as

p�v� � 1

M

XM
n�1

exp�−�v − V0n�2∕2w2
s �: (9)

Here, ws should be much smaller than the width of τ̃ to ensure
efficient sampling. Further, we approximate the ideal complex
aperture function of Eq. (7) viz.,

τ�ρ, θ� � �circ�ρ∕a� − circ�ρ∕b�� exp�ilθ�, (10)

where the constraint a > b ≫ a − b is imposed on the magni-
tudes of the inner and outer radii b and a, of the annual aper-
ture, respectively. Further, circ is a circular function. We will
refer to these non-ideal BBAs, simulated numerically and gen-
erated experimentally, as quasi-BBAs. In the experiment, the

generation of high-quality partially coherent quasi-BBAs is
ensured by minimizing the ratio �a − b�∕b.

In Fig. 1, we display the sampling function p (first row), the
magnitude of the degree of coherence (second row), and the
radiant intensity (third row) distributions of numerically
simulated quasi-BBAs for trianglular, square, and hexagonal
OCLs. The results are obtained with the fast Fourier transform
(FFT) algorithm in MATLAB using Eqs. (1)–(3), (6), and (10).
In our simulations, we choose the aperture function parameters
as a � 0.5 m, b � 0.35 m. The geometrical structure of
the function p is shown in Figs. 1(a1)–1(c1). Our results in
Figs. 1(a3)–1(c3) prove the theoretical possibility of quasi-
BBAs generation with highly controllable beam orders and
spatial distributions.

We now describe the experimental generation of partially
coherent quasi-BBAs. The experimental setup is illustrated
in Fig. 2. A laser beam, emitted from Nd:YAG, is expanded

Fig. 1. (a1)–(c1) OCL distributions p with triangular, square, and
hexagonal patterns, respectively; (a2)–(c2) modulus of the source de-
gree of coherence jμj of the corresponding OCLs; (a3)–(c3) radiant
intensity distributions of the generated quasi-BBAs with different
beam orders. The radiant intensity distributions are normalized by
the peak intensity.

Fig. 2. Experimental setup for generation and measurement of
different beam order quasi-BBAs; laser, Nd:YAG laser; BE, beam
expander; MA, microlens array; AA, amplitude aperture; RGGD,
rotating ground-glass disk; L1, L2, and L3, thin lenses; SPP, spiral
phase plate; AF, amplitude filter; BS, beam splitter; CCD, charge-
coupled device; BPA, beam profile analyzer; PC, personal computer.
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by a beam expander (BE) to convert it to effectively a plane
wave—to a beam with the Rayleigh range far exceeding the
laboratory size to be precise—such that the intensity in a small
central area of the beam can be considered uniformly spatially
distributed. The central spot is then focused by a microlens
array (MA) with the focal length f � 65.6 mm	 3%. MA
is comprised of nine microlenses, the dimensions of each mi-
crolens being 1 × 1 mm. An amplitude aperture (AA), placed
between the MA and the rotating ground-glass disk (RGGD),
is used to control the spatial distribution of sampling points.
The AA is comprised of several holes with a diameter of about
1.0 mm each. In the experiment, we use triangular, square, or
hexagonal patterned AAs to generate the corresponding quasi-
BBAs, as shown in Figs. 1(a3)–1(c3). The transmitted beam
spot from the AA is focused on the RGGD, which is located
in the back focal plane of the MA. Hence, the beam transmitted
through RGGD, made up of a number of fine speckles, serves
as a (sampling) function p. As a precise spatial intensity distri-
bution across each speckle is irrelevant, we approximate the in-
tensity distribution across the speckle with a Gaussian. The
intensity pattern after the RGGD can be evaluated by a beam
profile analyzer (BPA), and through a numerical fit to the ex-
perimental results, we obtain for the spot size of each Gaussian
beam ws � 21.2 μm. The light emerging from the RGGD is
collimated by a thin lens L1 with focal length f 1 � 400 mm to
form an OCL. The generated OCL is then modulated by an
annular aperture, shown in the inset of Fig. 2 and by a spiral
phase plate (SPP), which are used in concert to generate a quasi-
Bessel beam and control its topological charge. The annular
aperture in Fig. 2 is labeled as an amplitude filter (AF);
its parameters are a � 0.5 mm and b � 0.35 mm. This
procedure realizes the complex AA function of Eq. (10) in
the laboratory.

Next, the aperture modulated OCL is split by a beam split-
ter (BS), and the transmitted beam, after passing through a thin
lens L3 with focal length f 3 � 150 mm, arrives at a charge-
coupled device (CCD). The distances from L3 to AF and from
L3 to CCD are 2 f 3, which indicates the degree of coherence in
the plane of CCD is the same as that in the source plane (just
behind AF). The instantaneous intensity recorded by CCD can
be used to recover the source degree of coherence from the nor-
malized fourth-order correlation function, assuming Gaussian
statistics of the source [26]. We obtain the source coherence
width δ0 � 3.2 mm through a numerical fit to the experimen-
tal results.

Further, the reflected beam that is focused by a thin lens L2
with focal length f 2 � 150 mm then arrives at BPA. Both dis-
tances, from L2 to AF and from L2 to BPA, are equal to f 2.
This procedure allows us to obtain far-field intensity distribu-
tions of quasi-BBAs with different topological charges con-
trolled by SPP.

We now compare our experimental results with our simula-
tions. To faithfully reproduce the experimental conditions, we will
make use of the acquired experimental data for all the correspond-
ing simulation parameters. To make connection with the exper-
imental situation we define a Fourier transform in Eq. (5) as

τ̃�s⊥� ∝
Z

τ�ρ� exp�−iks⊥ · ρ∕f 2�d2ρ: (11)

In Figs. 3(a)–3(c), we present the density plots of experi-
mentally generated triangular, square, and hexagonal patterned

partially coherent quasi-BBAs. In this experiment, the OCLs
are shaped by the annular aperture alone (no SPP inserted any-
where). Thus, the individual beamlets in a BBA are vortex free.
As one can see in Figs. 3(a)–3(c), the array background is free of
any speckle noise. To examine the individual Bessel beamlet
quality in an array, we plot in Figs. 3(d)–3(f ) the normalized
one-dimensional (1D) intensity distributions corresponding to
the beamlets marked with white dashed lines in Figs. 3(a)–3(c).
The corresponding theoretical results are also shown in
Figs. 3(d)–3(f ) for comparison. In our simulations, we consid-
ered ideal OCLs with infinitely small node widths and found
our experimental results in excellent agreement with the
simulations, as evidenced by Figs. 3(d)–3(f ).

To demonstrate efficient control of the BBA topological
charge in our protocol, SPPs with topological charges l � 1
or 2 were inserted behind the AF. In this procedure, SPPs
should be carefully aligned to ensure that the phase singularity
lies on the AF symmetry axis.

In Figs. 4(a) and 4(b), we display our experimental results
for the normalized intensity distributions of square BBAs with
l � 1 and 2. The 1D intensity distributions of individual
beamlets and the corresponding theoretical results are exhibited

Fig. 3. (a)–(c) Experimental results for far-field normalized intensity
distributions of OCLs, modulated by an annular aperture with no spi-
ral phase plate inserted—corresponding to BBAs with l � 0. (d)–(f )
One-dimensional intensity distributions of individual Bessel beamlets,
marked by white dashed lines in (a)–(c), across the dashed lines,
obtained experimentally (red dots), and in simulations (solid lines).

Fig. 4. (a) and (b) Experimental results for the normalized intensity
distributions of partially coherent BBAs with topological charges
l � 1 and 2. (c) and (d) One-dimensional intensity distributions of
individual Bessel beamlets, marked by white dashed lines in
(a) and (b), across the dashed lines, obtained experimentally (red dots),
and in simulations (solid lines).
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in Figs. 4(c) and 4(d). We observe that the individual beamlet
concentric rings in Figs. 4(a) and 4(b) are rougher on the edges
than are those of the vortex-free BBA beamlets. This is likely
because there is a slight deviation of the vortex phase imparted
by the SPP on a beamlet in the experiment from an ideal vortex
phase in theory due to the imperfections introduced by an SPP
manufacturing process. Next, we can infer from Figs. 4(c) and
4(d) that the beamlet intensity at a dark vortex core does not
vanish. This is a common feature of partially coherent vortex
beams. It is a consequence of the fact that unless such beams are
judicially engineered to maintain their vortex structure on free-
space propagation [27,28], the imperfect correlation of plane
waves, comprising the beam angular spectrum and leading
to a perfect source intensity null at the vortex core, results
in gradual “filling” of the core upon vortex beam propagation
in free space [29].

Further, we note that the energy utilization in our experi-
ment is about 5%. Most of the energy is lost due to source light
scattering by the RGGD and AF (annular aperture). This poses
no problem as long as no high intensity is required for a par-
ticular application. To reduce energy losses, one may also use
an optical-axicon-based method of generating individual Bessel
beams [30]. Finally, the generated beam arrays are not sensitive
to the RGGD alignment. Yet, the BBA quality is affected by
the AF geometrical parameters, since the OCL node width
cannot be made arbitrarily small in the experiment.

In summary, we proposed a protocol to generate high-quality,
partially coherent BBAs with highly controllable beam orders
and spatial distributions. We numerically simulated the gener-
ation of partially coherent non-ideal quasi-BBAs. We verified
our protocol by experimentally realizing the advanced quasi-
BBAs and found our simulations in reasonable agreement with
our experimental results. The proposed BBAs are expected to
find applications to multi-particle trapping and micromanipula-
tion, optical metrology and microscopy, as well as to 3D
imaging.
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